Rocking Isolation

Prof. Dr. Ioannis Anastasopoulos

The concept of Rocking Isolation

Conventional Design

Rocking Isolation

Examples of Accidental Rocking Isolation

Real Examples of Accidental Rocking Isolation

Adapazari, Kocaeli 1999 (Turkey)

Real Examples of Accidental Rocking Isolation

Adapazari, Kocaeli 1999 (Turkey)

Better soil conditions:
 → No accidental rocking isolation
 Pancake collapse

Example problem: motorway bridge

Conventional Design

Rocking Isolation

Professur für Geotechnik

d = 2 m

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

(Anastasopoulos et al., 2009)

(Anastasopoulos et al., 2011)

Soil Constitutive Model

Von-Mises Failure Criterion, Isotropic–Kinematic Hardening, Associative Flow Rule

Example problem: motorway bridge

Soil Constitutive Model

Modification to account for confinement

(user subroutine in ABAQUS):

 $\sigma_y = \frac{\sqrt{3}(\sigma_1 + \sigma_2 + \sigma_3)}{3} \sin \varphi$

 The key advantage of the model is its straight—forward calibration based on few parameters only.

Soil Constitutive Model

- Strength: $\sigma_y = \begin{cases} S_u \text{, for clay} \\ \frac{\sqrt{3}(\sigma_1 + \sigma_2 + \sigma_3)}{3} \sin \varphi \text{, for sand} \end{cases}$
- Initial Elasticity Modulus $C = \kappa \sigma_y$ $\kappa = \begin{cases} 100 \div 1000 \text{, for clay} \\ 4000 \div 12000 \text{, for sand} \end{cases} \Rightarrow v_s \text{, } G_0 \text{, or empirical} \end{cases}$
- Hardening Parameters:

$$\sigma_0 = \frac{\sigma_y}{\lambda}$$
, λ ranging from 1 to 10 \rightarrow Calibration against $G - \gamma$ curves

Professur für Geotechnik

Validation against physical model tests:

- UC Davis centrifuge model tests
- TRISEE large scale-tests

Nonlinear dynamic time history analysis

- A total of <u>29 seismic records</u> were used to cover a wide range of possible seismic excitations.
- Indicative results are shown here for the devastating
 Takatori record from the *Kobe 1995* earthquake.
- Conventional design is compared to the rocking isolation design alternative in terms of:
 - (a) Deck drift δ (due to rotation δ_r , flexural δ_c)
 - (b) Foundation moment-rotation response
 - (c) Foundation settlement

Deck drift

Foundation *M*–ϑ

Foundation Settlement

Professur für Geotechnik

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

Takatori (Kobe, 1995)

Example problem: motorway bridge

Conventional Design

Professur für Geotechnik

Rocking isolation

Prof. Dr. I. Anastasopoulos | 9. 6. 2017 | 15

Shaking table testing @ NTUA (Greece)

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

The NTUA–Soil Mechanics Laboratory Shaking table

Experimental Proof of Concept

Shaking table testing @ NTUA (Greece)

Experimental Proof of Concept

Shaking table testing @ NTUA (Greece)

Sin 1 Hz, 0.4 g

Centrifuge modeling

Centrifuge modeling

Centrifuge modeling

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

Centrifuge modeling

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

Centrifuge modeling

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

Centrifuge modeling

Centrifuge modeling

Courtesy of Prof. Bruce Kutter

Professur für Geotechnik

Centrifuge modeling

Courtesy of Prof. Bruce Kutter

Centrifuge modeling

Courtesy of Prof. Bruce Kutter

Centrifuge modeling

Courtesy of Prof. Bruce Kutter

Centrifuge modeling

Courtesy of Prof. Bruce Kutter

20. Symposium Bauwerksdynamik & Erschütterungsmessungen

The Dundee Geotechnical Beam Centrifuge

ETHzürich

The Dundee Geotechnical Beam Centrifuge

(Loli et al., 2014)

Experimental Proof of Concept

Centrifuge model testing @ the University of Dundee (UK)

Conventional Design

Rocking Isolated

Thank you for your attention!

